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Collisionless plasma conditions

Non-thermal particle distributions

Non-thermal features in particle
distributions form and survive:

o Temperature anisotropies
Multi-temperature

o
o Beams/drifts
°

IM = A (low-moment) fluid
description becomes highly
problematic!
YoX I“u
o Alternative:

kinetic description!
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Solar-wind turbulence is mostly Alfvénic

o Wind measurements

o Solar-wind turbulence
has mainly
Alfvén-wave-like
polarisation

o Non-compressive
component with
0 A 0 (anti-)parallel év and
Time (hours) /B

(Verscharen et al., 2019)
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Compressive turbulence in the solar wind
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Fluctuations in the distribution function

In kinetic theory, a plasma wave is associated with fluctuations in
the distribution function:

fp = fOp =+ 6fp-
The time-dependent perturbation ¢ f}, leads to fluctuations in the
plasma bulk parameters. For example:

onp = nop/éfpd3v, density
oUp = /5fp v||d3v, bulk speed
o0pip = %/(ﬁp v2 A3, perpendicular thermal pressure
op|p = nopmp/éfpvﬁd%. parallel thermal pressure
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Fluctuations in the distribution function

Slow Mode with 6 = 88°, B, = B = 1, kjva/Qp = 0.001, 6B./Bo = 0.1

o These signatures are
different for each plasma
mode.

@ On the following slides:
Predict behaviour of the
three lowest velocity
moments in large-scale
fluctuations (using analytical

L gyrokinetic theory).

o Compare with observations.

(=Je(+)

(Verscharen et al., 2016)
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How fluid-like is small-scale turbulence?

Compressive turbulence: fluid and kinetic theory
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Compressive turbulence: fluid and kinetic theory
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How fluid-like is small-scale turbulence?

Compressive turbulence: fluid and kinetic theory
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How fluid-like is small-scale turbulence?

Compressive turbulence: fluid and kinetic theory
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How fluid-like is small-scale turbulence?

Compressive turbulence: fluid and kinetic theory
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How fluid-like is small-scale turbulence?

Compressive turbulence: fluid and kinetic theory
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How fluid-like is small-scale turbulence?

Kinetic-Alfvén turbulence at k| p, = 2: two-fluid and kinetic theory

MMS magnetosheath measurements
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(Wu, DV, et al., 2019)
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How fluid-like is small-scale turbulence?

Kinetic-Alfvén turbulence at k| p, = 2: two-fluid and kinetic theory

MMS magnetosheath measurements
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How fluid-like is small-scale turbulence?

Kinetic-Alfvén turbulence at k| p, = 2: two-fluid and kinetic theory

MMS magnetosheath measurements
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How fluid-like is small-scale turbulence?

Kinetic-Alfvén turbulence at k| p, = 2: two-fluid and kinetic theory

MMS magnetosheath measurements
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o Debye is a UCL-led proposal for
ESA's F-class programme.

@ Main spacecraft will measure
electric/magnetic fields, electron
distributions, proton properties.

o 3 deployable spacecraft will
measure high-frequency
magnetic-field fluctuations.

o Science goal: How are electrons
heated in astrophysical plasmas?

o Scale coverage: 300 m to 3,000 km.

o Full proposal now under review.
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Exploring the smallest scales

ESA F-class proposal Debye

The first dedicated o SWA/EAS heritage: electron
electron-astrophysics mission! pitch-angle distributions with

50 ms cadence.
(A) Collisional relaxation (D) Landau damping
VL vi

o Multi-point and

multi-baseline SCM
measurements.

(®) Expansion (8) Cyclotron damping o JAXA/NASA collaboration
i i on DSC.

(C) Instabﬂmves (F) snochastl‘f: heating ) p

AAAV, ‘v, Follow us on Twitter:

@DebyeMission
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Conclusions

@ Plasma waves and turbulence are associated with characteristic
fluctuations in distribution functions and velocity moments.

o Polarisation of compressive fluctuations (large and small scales)
is in better agreement with fluid than with kinetic predictions.

@ Some yet unknown process (e.g., fluctuating-moment effects
or anti-phase-mixing) makes the plasma behave more fluid-like.

@ Solar Orbiter and Debye will explore field and particle
fluctuations at small scales in great detail.

¥ @DVerscharen

(Credit: NASA) (Credit: ESA)
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Closure of the moment hierarchy

What's the difference?

Recipe for MHD: Add proton and electron moment equations,
assume quasi-neutrality, define bulk parameters!
For example, momentum equation:

9 1
&(pU)—FV-(pUU):—V-P—szxB

This equation is exact as long as quasi-neutrality and Cf; = 0 are
fulfilled!

The only problem is the combined pressure tensor P = P, + P..
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Closure of the moment hierarchy

What's the difference?

Recipe for MHD: Add proton and electron moment equations,
assume quasi-neutrality, define bulk parameters!
For example, momentum equation:

9 1
&(pU)—FV-(pUU):—V-P—FijB

This equation is exact as long as quasi-neutrality and Cf; = 0 are
fulfilled!

The only problem is the combined pressure tensor P = P, + P..

Easiest closure: P is isotropic and adiabatic, so that we can write
V- P = Vp with p x p?
(similar assumptions apply to Ohm's law etc.)
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Closure of the moment hierarchy

The key question

Which collisionless processes lead to an adiabatic closure for the
pressure tensor?

o Equivalently: Which processes suppress higher moments
(especially heat flux) in the distribution function?

o Important: The main differences between large-scale kinetic
theory and MHD are due to the moment-closure problem!
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A possible explanation: fluctuating-moment effects

IA wave with 6| B|/Bo = 0.028
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Another possibility: anti-phase-mixing

Schekochihin et al. (2016)
discuss “anti-phase-mixing’.

o Turbulence cascades to

m
phase mixing decelerates
as m increases |arger k‘J"
o Phase mixing leads to
cascade of VDF to larger
nonlinear advection .
(passive scalar mixing) accelerates Hermite-moment orders m.
=> as k increases
o Stochastic echo creates flux
k
N of energy from larger m to
(Credit: B. Chandran) Sma“er m.

@ Comparison of timescales
shows that distribution stays
at low m.
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