

Agenda

Brief instrument description and goals
Instrument performance to date
Commissioning summary:

Plasma measurements at 30s
Minor ions in E/q – T space
C6+ to He2+ separation
Pickup ions

Problems and issues

oirap

HIS as installed on the S/C

26-May-2020

Linking the Solar Wind and the Sun

HIS Introduction

SWA Team Meeting

The Heavy Ion Sensor (HIS) has been developed to measure distribution functions of heavy ions (i.e. $m \ge 4$) in the solar wind

Physical properties of heavy ions carry important information about processes governing the outflow of the solar wind:

- Charge states of the heavy ions are established very low in the corona and controlled by the local electron temperature and density
- Relative abundances of ions are affected by how long those particles were subject to the gravitational potential of the Sun or other fractionation processes
- The distribution functions of the ions trace the plasma processes that are at work during the expansion

Instrument design is based on the combination of an electrostatic analyzer (to select E/q and directions of arrival), followed by a post-acceleration, and a time-of-flight – total-energy measuring

oirap

UCL

Livi 3

UCL MSSL **O**irap

HIS Science Performance to Date

- Almost 100 hours of operation in flight at full capabilities without any spurious event
- 20 hours over 3 days of full science data
- MCP and SSD performances exactly as during calibration
- All level one requirements verified during calibration
- Ready to collect a wealth of novel and important data

L1-Requirement	Requirement	Status	Actual range	
LWS-SOC-SWA-HIS-M1	Energy range 0.5-60 keV	\checkmark	0.5 – 80 keV	
LWS-SOC-SW A-HIS-M2	Elevation range +17 : -17	\checkmark	-20:+20	
LWS-SOC-SW A-HIS-M2	Azimuth range -30 : +66	\checkmark	-30 : +66	
LWS-SOC-SWA-HIS-11	m/dm > 4	\checkmark	m/dm > 5 for m=1- 36; m/dm=4 for m=40- 86	
LWS-SOC-SWA-HIS-11	dt < 30 sec	\checkmark	1,000 particles collected in 30 seconds	
LWS-SOC-SWA-HIS-11	6% < d(E/q)/(E/q) < 10%	\checkmark	8%	
LWS-SOC-SWA-HIS-12	He+2; C+4 to C+6; 0+5 to 0+8; Fe+6 to Fe+20; Mg+6 to Mg+12; Ne+6 to Ne+9; Si+6 to Si+12; He+; C+ and O+	\checkmark	Verified for all of those, plus S+1 to S+5, Kr+1 to Kr+3	
WA Team Meeting			Livi	

Linking the Solar Wind and the Sun Cience Assessment Ground calibration verified HIS as fully operational Measurements included solar-wind-like high charge states for multiple ions Preliminary data analysis completed Further analysis and comparison with simulations underway All performance details satisfy Level 1 Science Requirements In-flight performances collected to date confirm requirements for the sensor can be met, once the sensor is properly tuned

- Mission Operations and Data Analysis infrastructure fully operational
- Team actively collaborating with and contributing to Science Operation Working Group and Science Working Team planning

Linking the Solar Wind and the Sun

MCP Performances

- MCP gain was checked using cosmic rays as stimulants
- Counts (~30 cts/s) corresponding to the expected fluence through the MCP area; coincidences also matching what expected
- Counts showed the expected trend with voltage, reaching plateau at around 2050-2100V

oirap

UCL

SWA Team Meeting

SSD Performances

SSD noise as expected

ICHICA.

SwRI

26-May-2020

- Thresholds have been raised slightly from calibration to optimize sensor performance:
 - Values could have stayed the same, but we decided to raise them slightly to bring dark counts from 1,000/s to 100/s
 - For long term operations we may relax back, once performances have been confirmed

Detector	Azimuth	C T	Calibration	Flight Threshold	Counts/s
	0	57.8	293.6	297.	5 35.6
	1	54.7	279.6	284.	7 20.4
	2	51.5	272.6	284.	7 35.6
	3	48.4	283.1	287.	0 15.3
	4	45.3	283.1	287.	0 56
	5	42.1	272.6	284.	7 15.3
	6	39.0	283.1	290.	9 45.8
	7	35.9	276.1	284.	7 25.5
	8	32.8	269.1	284.	7 30.5
	9	29.6	283.1	290.	9 15.3
	10	26.5	269.1	284.	7 10.2
	11	23.4	269.1	284.	7 10.2
	12	20.2	272.6	284.	7 56
	13	17.1	283.1	284.	7 10.2
	14	14.0	283.1	284.	7 10.2
	15	10.9	283.1	284.	7 15.3
	16	7.7	290.1	286.	2 15.3
	17	4.6	290.1	290.	1 5.1
	18	1.5	276.1	284.	7 35.6
	19	-1.6	286.6	286.	6 5.1
	20	-4.7	276.1	284.	7 10.2
	21	-7.8	272.6	284.	7 15.3
	22	-10.9	272.6	284.	7 20.4
	23	-14.1	279.6	284.	7 15.3
	24	-17.2	321.6	337.	2 188.4
	25	-20.3	321.6	321.	6 208.8
	26	-23.5	307.6	307.	6 239.3
	27	-26.6	300.6	308.	4 234.2
	28	-29.7	321.6	333.	3 916.5
	29	-32.8	OFF	OF	F OFF

UCL

Oirap

SWA Team Meeting

Data Overview

Normal and burst mode

AICHICA.

- Alignment of E/q and elevation channels in burst still to be completed
- Start and stop have some background from cosmic rays and accidentals (more later)
- TCR very clean (as expected)
- Good directionality

NASA

Livi 9

26-May-2020

Linking the Solar Wind and the Sun

Time of Flight Spectra

- Protons, alphas, and O6+ clearly identified in ToF only
- High level of background caused by proton accidentals: start and stop proton efficiencies are at ~70%, and a start can be coupled to a stop from a different particle
- This (and total load on the plates) is the reason for the Proton Avoidance tool, which is implemented in the flight software, but not yet activated

Oirap

UCL

Linking the Solar Wind and the Sun

In E/q – ToF Space

- Particles align well along measured calibration tracks
- Intensities are greatly affected by the accidentals and by the choice of priority table (more later)
- It is estimated that presently the efficiency is between 1% and 5%
- Tools are already available in the flight software to counteract both effects; need to be activated and tested

oirap

Livi 12

UCL MSSL

Linking the Solar Wind and the Sun 🎰 🥯 FDIR: Fault Detection, Isolation, and Recovery (1 of 2)

- Self protects the instrument if conditions appear critical or dangerous
- Tripped two limits during commissioning:
 - □ Low temperature on the sensor (-40°C)
 - Not a dangerous situation per-se, Instrument would survive
 - It was observed during TV that as temperature gets below -40°C, the AC link for the detector section has a hard time to start and requires more power
 - This is undesired, and the plan was never to attempt turning the instrument on at those low temperatures
 - Unfortunately, this was not recognized as a requirement by Astrium, and the survival heater was set just at -39°C (+/-1°C)
 - As it happens, once during power up we hit the point at the lowest temperature and the instrument (correctly and as planned) turned itself off

SwRI

oirap

FDIR: Fault Detection, Isolation, and Recovery (2 of 2)

- □ High current on +12V, driven by EAIS
 - Issue already noted during TVac, and reported as NCR:
 - O Power cycle of EAIS power supply does not completely reset the configuration
 - As a result, feedback loop may start drifting, causing current to raise
 - Eventually current reaches 100mA in the drive circuit, at which point the FDIR detects a dangerous situation and turns HIS off
 - Suggested and implemented cure in the flight software: enable EAIS, set all bits to 0; HIS chose to disable EAIS after all bits were set to maintain double safety commanding
 - Unfortunately, this patch made the situation worse, and FDIR turned HIS off twice (4/24 & 4/28)
 - In close collaboration with IRAP we identified an updated scheme
 - Enable EAIS, set all bits at zero, and set voltage on EAIS at a low level of -100V
 - Patch was effective
 - We will implement this in the flight software at a future point in time
 - Note that the drifting situation may arise only during test campaign: for normal flight operation EIAS is always on and commanded to appropriate voltages

SwRI

Oirap

UCL

Since Linking the Solar Wind and the Sun	SA							
Spacecraft Commanding (aka NCR-1419)								
Before starting commissioning, we were afraid of "double miss" command (aka NCR 1419), where missing two consecutive commands would cause spacecraft to turn off power to the instrument								
This happened to SWA during ground operation on the ETB								
This might have caused severe effects during commissioning								
ESA/Airbus performed a patch on the flight software, whereby a missing Service 20 message would not count as a missed command								
This reduced drastically (3-4 orders of magnitude) the probability of a "double miss", as Service 20 messages come every 125ms								
SWA did not experience any "single miss" command during in-flight commissioning								
Note that SpaceWire still exhibits problems at spacecraft level:								
On two instances, clogging of SpaceWire bus by instrument A did produce "multiple errors" and hence reboots on instrument B and C								
On one instance, heavy commanding of instrument D produce a collapse of th spacecraft messaging system, and spacecraft went into safe mode								
Problem is actively been investigated by ESOC / ESA / Airbus								
26-May-2020 SWA Team Meeting Li	vi 17							