Solar Wind Turbulence Features for Parallel and Perpendicular Sampling Direction

Roberto Bruno¹, Raffaella D'Amicis¹, Rossana De Marco¹, Vamsee Krishna Jagarlamudi^{1,2}, Daniele Telloni³, Denise Perrone⁴, Silvia Perri⁵, Francesco Valentini⁵, Raffaele Marino⁶, Francesco Califano⁷, Luca Sorriso-Valvo⁸, Marco Castronuovo⁴, Mario Salatti⁴, Leonardo Amoruso⁹, Raffaele Ascolese¹⁰, Vito Fortunato⁹, Gennaro Mele¹¹, Christopher John Owen¹², Stefano A Livi¹³, Philippe Louarn¹⁴, Timothy Simon Horbury¹⁵, Andrei Fedorov¹⁴, Lorenzo Matteini¹⁵, Jim M Raines¹⁶ and Daniel Verscharen¹², (1)INAF-IAPS, Rome, Italy, (2)CNRS-LPC2E, Orléans, France, (3)INAF-OATO, Turin, Italy, (4)ASI, Rome, Italy, (5)University of Calabria, Rende (CS), Italy, (6)CNRS, ECL, Lyon, France, (7)University of Pisa, Pisa, Italy, (8)CNR-ISTP, Bari, Italy, (9)Planetek, Bari, Italy, (10)TSD, Pozzuoli, Italy, (11)Leonardo, Taranto, Italy, (12)UCL-MSSL, London, United Kingdom, (13)SwRI, San Antonio, TX, United States, (14)CNRS-IRAP, Toulouse, France, (15)Imperial College London, London, United Kingdom, (16)University of Michigan, Ann Arbor, MI, United States

SH039 - First Data from the Solar Orbiter Mission III

Monday, 14 December 2020

20:30 - 21:30

Virtual

2 20:54

- Cathain

SH039-07 Solar Wind Turbulence Features for Parallel and Perpendicular Sampling Direction *Roberto Bruno*

Virtual

This work is a follow up of the paper

D. Telloni and R. Bruno, Linking fluid and kinetic scales in solar wind turbulence, MNRAS 463, L79–L83 (2016)

WIND data: plasma moments 92 sec No VDF mag field 11Hz

Figure 2. From top to bottom: wind speed, sampling angle, magnetic field strength, proton number density, total proton temperature, temperature anisotropy T_{\perp}/T , proton plasma β at the scale of 92 s, $-\sigma_c$ and σ_r at the scale of 1 h, power of the magnetic field strength fluctuations at 0.7Hz and at 1 h. KAWand ICW events are marked in blue and red colours, respectively.

V_{sw} (Km/s)

NOT Alfvénic quasi-par interval

$$0^{\circ} < \Theta_{BR} < 20^{\circ}$$

summary

Based on what we have seen so far, if there are not ICWs (within quasi-par intervals) there is no beam.

This does not necessarily mean that the ICWs produce the beam.

ICWs and beam might be two different effects of the interaction of Alfvén waves with protons at the frequency break.

Probably we observe distinct beams only when we sample in the quasi-par direction because beams lie on that direction. (sampling direction effect??)

Next step: using 2D cuts in the VDF, we will look for beams also within quasiperp intervals