SOLAR ORBITER
SWA
Proton-Alpha Analyzer (PAS)
Main Reference Document (PAS Bible)

V.3.0

Andrey Fedorov
andrei.fedorov@irap.omp.eu
08/11/2022

1 The scope of this document and important references

The present document reflects the current state of PAS in flight. It shows the principal summary of all instrument design and features. Usually one needs to read this document only to understand the instrument design, performance and control.
The main important references:
  1. IRAP PAS flight data, control, documents, etc : IRAP Solar Orbiter page (if you need a login and password, ask us)
  2. IRAP PAS operation_and_data_log: PAS operation/data summary
  3. Where is Solar Orbiter: Where is Solar Orbiter

2 General principles

The Solar Orbiter spacecraft and location of the PAS instrument is shown in Figure 1. There you can see also the PAS and the spacecraft axis definitions, and angular bin relative locations.
image: 0_home_fedorov_SOLARORB_PAS_THE_BIBLE_DATA_DESCRIPTIONS_PAS_frame_SC_frame_20201013.jpg
Figure 1: SC and instrument bins definitions
The instrument general conception is shown in Figure 2. The main conception principles are:
  1. To protect the instrument from the very strong incidence heat and light flux the instrument aperture is a thin slit. Also the the instrument is protected by its own thermal shield (red in the image).
  2. The internal electrostatic optics ( blue in the image) is positioned to avoid direct impact of the light to the optical surfaces. We assumed the the spacecraft can varies the sun-pointing attitude (due to an attitude control failure) in ± 6 range.
  3. The electrostatic optics consists of the elevation (top image plane) deflector, choosing the ion direction, and the electrostatic analyzer, filtering the ion energy, followed by the array of detectors.
  4. The detectors array is located along the azimuthal plane (bottom panel of Figure 2) that allows to resolve the azimuthal direction of the detected ions.
image: 1_home_fedorov_SOLARORB_PAS_THE_BIBLE_COMMON_IMPORTANT_IMAGES_ConceptionBase_8_Nov_2014.jpg
Figure 2: PAS general measurement principles
Azimuthal binning is shown in Figure 3 as a view from -Z spacecraft side.
image: 2_home_fedorov_SOLARORB_PAS_PASDOCS_UNITSPEC_PasAzimuthBinning_29_Sep_2014.png
Figure 3: PAS azimuthal binning
Conception of the elevation binning is in Figure
image: 3_home_fedorov_SOLARORB_PAS_PASDOCS_UNITSPEC_PasElevationBinning_26_Sep_2014.png
Figure 4: PAS elevation beaning and sweeping scheme
General measurement diagram: 10 Sep 2014
image: 4_home_fedorov_SOLARORB_PAS_THE_BIBLE_PAS_Cycle_WaveForm_09_Sep_2014.jpg
Figure 5: Sampling waveform with counters accumulation windows
image: 5_home_fedorov_SOLARORB_PAS_PASDOCS_UNITSPEC_Measur_Princip_10_Sep_2014.png
Figure 6: PAS sampling diagram

2.1 Common View

25 Sep 2014
image: 6_home_fedorov_SOLARORB_PAS_THE_BIBLE_COMMON_IMPORTANT_IMAGES_PAS_Common_View_10_Jun_2014.jpg
Figure 7: PAS 3D transparent view
The photo (STM):
image: 7_home_fedorov_SOLARORB_PAS_LOG_PAS_STM_for_Presentations_27_Aug_2014.jpg
Figure 8: PAS STM photo

2.2 Ion Optics Design

Definitions:
Term
What is it
Unit
Comment
E
Particle energy
eV/Q
U AN
Analyzer voltage
V
Always positive
U TOPD
Upper Deflector Plate Voltage
V
Positive/Negative
U BOTD
Bottom Deflector Plate Voltage
V
U BOTD =- U TOPD
U TP
Top Cap Voltage
V
Positive/Negative
Φ
Incident Elevation (polar) angle
deg
See Figure 
D
U TOPD / U AN
K
E/ U AN
13.2 (HIS calibr)
T
U TP / U AN
Table 1: Ion optics definitions
Figures 910 and 11 show all details of PAS ion optics system design.
image: 23_home_fedorov_SOLARORB_PAS_THE_BIBLE_COMMON_I___MAGES_PAS_Ion_Optics_Conception_31_Jan_2013.png
Figure 9: XZ and XY cuts of the PAS ion optics
image: 24_home_fedorov_SOLARORB_PAS_THE_BIBLE_COMMON_IMPORTANT_IMAGES_PAS_collim_spec.png
Figure 10: PAS collimator ZOOM
image: 25_home_fedorov_SOLARORB_PAS_THE_BIBLE_COMMON_IMPORTANT_IMAGES_PAS_Sphera_Scallop.png
Figure 11: PAS spheres scalloping

2.3 Instrument properties based on ray-tracing and calibration

Results of the PAS last calibrations ( the reference doc: TBD), Date TBD
Esteps = double(18565.0*0.943^findgen(96)) (Sequencer 5.0, 2019)
U AN =E/K=E/13.2=1515.20.952 7 ie
D( Φ ) =1.603-0.1816 Φ -0.00159 Φ 2 =C D 0 +C D 1 Φ +C D 2 Φ 2
U TOPD =-D U AN
To control Top Cap the algorithm should be as follows:
image: 8_home_fedorov_SOLARORB_PAS_THE_BIBLE_COMMON_IMPORTANT_IMAGES_20190321_PAS_FS_D-T_Seq_nodes.jpg
Figure 12: PAS deflector calibration and the sequence nodes
There is a table of values (TO CORRECT!):
0
1
2
3
4
5
Dr(i)
-3.03
-0.79
1.32
2.37
3.3
4.88
Tr(i)
5.28
2.64
0.66
-2.90
-5.94
-3.96
dTdD(i)
-1.179
-0.938
-3.39
-3.269
1.253
Table 2: Deflectors nodes table (TB corrected)
  1. Define D( Φ )
  2. Define id and id+1 where D( Φ ) is between
  3. Calculate T T( Φ ) =( T id+1 - T id ) /( D id+1 - D id ) ( D( Φ ) - D id ) + T id =dTd D id ( D( Φ ) - D id ) + T id

2.4 PAS block-diagram and general configuration.

PAS block diagram V.4.0 form 29 Apr 2014
There are two separated HV and principally independent units: 1) DEFLHV (Analyzer and deflector HV) formally includes all DACs; 2) CEMHV references DACs are formally included into the FPGA board.
image: 9_home_fedorov_SOLARORB_PAS_THE_BIBLE_COMMON_IMPORTANT_IMAGES_PasBlockDiag_V5_31_Jul_2015.jpg
Figure 13: PAS block diagram. Version 4.0, 29 Apr 2014,

Design details

This section TO BE COMPLETED.

3.1 Mechanical Design

Ebanol-C coating
The general structure is in Figure 14. Origin: Dheren Dec 2013.
image: 10_home_fedorov_SOLARORB_PAS_LOG_Ebonol_C_structure_17_Dec_2013.jpg
Figure 14: Ebanol-C common structure

3.2 Detectors Board

image: 11_home_fedorov_SOLARORB_PAS_THE_BIBLE_COMMON_IMPORTANT_IMAGES_CEM_Allocation_req_10_Nov_2014.jpg
Figure 15: PAS CEM polarization
Conception of the resistance and high/low count rate in the azimuthal binning.
  0       1   2   3   4   5   6   7       8    9   10
200M  | 200M 80M 80M 80M 80M 80M 200M | 200M 200M 200M
      |------- Central part ----------|

3.3 HV Optic Board

The spec of the HV profiles for Detector Board and HV Optics board:
image: 12_home_fedorov_SOLARORB_PAS_THE_BIBLE_PAS_FS_HV_profile_example.jpg
Figure 16: Detector board and HVOptic board Profile SPEC

3.4 FPGA

3.4.1 HV control

image: 13_home_fedorov_SOLARORB_PAS_THE_BIBLE_PAS_HV_Control_25_Nov_2014.jpg
Figure 17: HV and amplifiers power diagram
image: 14_home_fedorov_SOLARORB_PAS_THE_BIBLE_HK_reading_Scheme_24_Nov_2014.jpg
Figure 18: HK reading diagram

Sequencer

The PAS Sequencer performs the HV stepping and data sampling in two schemes: “STATIC scheme” and “DYNAMIC Scheme”. See Figures 19 and 20. At any case each scheme is a sequence of Samplings. Each sampling (or set of samplings) can be configurated using the parameters as shown in Table 3. DPU starts the static scheme by sending “1” to the PAS mailbox, and starts the dynamic scheme by sending “2” to mailbox.
The static scheme is also configurated by parameters “K” and “N”. After start of the static scheme the Sequencer runs N seconds and that stop to the idle for 3 seconds, and then restart the Static Scheme again. This process continues until PAS receives “0” to its mailbox from DPU (stop scheme after N seconds) or '0xFF' (stop immediately). Note the static sampling parameters are defiled by Ne, Se, Nel, Sel, provided by DPU.
The Dynamic scheme needs additional configuration of for the “Full Sampling”, The sequencer performs this “Full Sampling” before each “N” seconds interval. Such sequence: “Full Samplings”, N seconds of N*K samplings are repeating L times and the Sequencer performs the Full Sampling again after the end of a whole L interval. Then, after 3 seconds of idle, the Sequencer starts again the dynamic mode. The Sequencer is updating Se and Sel of normal samplings after each Full Sampling execution.
Name
Parameter
Range
Usage
Ne
Energy steps number
2 ... 96 (evens only)
Individual sampling, S and D
Se
Start energy number
0 ... 94 (evens only)
Individual sampling, S
Nel
Elevation steps number
1 ... 9
Individual sampling, S and D
Sel
Start Elevation
0 ... 8
Individual sampling, S
K
Number of samplings in one sec.
> 0
Individual sampling, S and D
N
Number of seconds of
>0
Static and
of continuous sampling
Dynamic
L
Number of intervals of N seconds
>0
Dynamic
Table 3: Sampling Configuration
DPU memory contains special tables (Section 6.1 with configurations for different modes (see Section 6.5 and 6.6).
image: 15_home_fedorov_SOLARORB_PAS_THE_BIBLE_PAS_Static_Schema_19_Dec_2014.png
Figure 19: Static Scheme
image: 16_home_fedorov_SOLARORB_PAS_THE_BIBLE_PAS_Peak_Track_Schema_19_Dec_2014.png
Figure 20: Dynamic Window Scheme
image: 17_home_fedorov_SOLARORB_PAS_THE_BIBLE_Elevation_Scan_Disg_14_Dec_2014.png
Figure 21: Elevation scan for the general sampling
image: 18_home_fedorov_SOLARORB_PAS_PASDOCS_UNITSPEC_Energy_Scan_Disg_15_Dec_2014.png
Figure 22: Energy scan for general sampling
image: 19_home_fedorov_SOLARORB_PAS_THE_BIBLE_Energy_Scan_Nel1_15_Dec_2014.png
Figure 23: Energy scan for constant elevation sampling

4.1 Pulse generator for EQM and PFM

#CEM in TC
0
1
2
3
4
5
6
7
8
9
10
CEM EQM
6
7
8
9
10
-
0
1
2
3
4
CEM PFM (EM)
0
1
2
3
4
5
6
7
8
9
10
Table 4: Addressing of the test pulse generator

4.2 CEM manipulations

4.2.1 How to set the HV on CEM

The digital command to set the CEM voltage is defined as:
DAC=round( HV[ V ] /1.221 )
The character values for the steps are in the table below:
Step, V
50
100
200
500
Decimal
0041
0082
0164
0410
HEX
0x0029
0x0052
0x00A4
0x019A
See also Section 4.5.

4.3 All versions of Sequencers and Configuration tables

Sequencer
Version/ Time
Stepping configuration table
Version/ Time
Usage
PAS_SCI_FM_4_0_Full_Image.hex
4.0
FM_Stepping_Configuration_Table_v2.0.txt
2.0
with PFM at Delivery
May 2017
Fiche de configuration des parametres du sequenceur FM - v2.0.xlsx
May 2017
4.1
3.0
PAS_SCI_FM_5_0_Full_Image.hex
5.0
FM_Stepping_Configuration_Table_v4.0.txt
4.0
installed to DPU S/W version 3.9
2019.04.12
Fiche de configuration des parametres du sequenceur FM - v4.0.xlsx
2019.04.12
in the PAS PFM since Oct 2019
Fiche de configuration des parametres du sequenceur FS - v4.2.xlsx
Special file with FS offsets
5.1
4.2

4.4 Current version installed to DPU-PAS-PFM (20 Nov 2019)

Version
5.0, 2019.04.12
PASDOCS/FPGADPU/FPGA_SEQUENCER/SEQUENCER_5_0/
File to load
PAS_SCI_FM_5_0_Full_Image.hex
HEX
Sequencer Code
PAS_SCI_FM_5_0.txt
Stepping Configuration table
FM_Stepping_Configuration_Table_v4.0.txt
Before the flight, the offsets are 0
Configuration Table as a spreadsheet
PAS_Stepping_Conf_Table_v4_0.xlsx
also .csv
Sequencer Configuration spreadshiit
Fiche de configuration des parametres du sequenceur FM - v4.0.xlsx
Before the flight, the offsets are 0
Code to transfer to TC
FPGA_SEQUENCER/TC_CONVERTER/PAS_config_table_TC.pro
Table 5: FM istalled Sequencer and config.
The Table 6 shows the Energy (Analyzer) sets. These constants are also in the “Sequencer Configuration spreadsheet” (Table 5)
Start Uan, V
1338.7
Configuration table
Analyzer K (Calibration)
13.782
PAS_FS_Calibration**.lyx
Start Energy, eV
18450.5
E i+1 / E i
0.943
Configuration table
Table 6: Analyzer and Energy table configuration

4.5 HV control, HK decoding, and FDIR parameters

All HK decoding coefficients are in PAS_HK_Conversion_all_models_25_Mar_2020.
The DPU FDIR limits are in SWA_PAS_PFM_FDIR_Limits_01_Feb_with_actions_2019.

5 COMMISSIONING special settings

5.1 Engineering mode table commissioning

The table below (Table 7) correspond to the file FLIGHT/COMMISSIONING/Engineering_Scheme_params_22_Nov_2019.xlsx
Parameter
Real Value
Dec Value
HEX
ANL_MAX
600 V
6292712
0x6004E8
K
0.255436
4285512
0x416448
ANL_TD_RATIO
1.15228
1208253
0x126FBD
ANL_BD_RATIO
1.14495
1200569
0x1251B9
ANL_TC_RATIO
1.14831
1204086
0x125F76
HT_STEPS_DURATION
60 s
60
0x00003C
Table 7: Engineering table for commissioning

DPU and CRUISE OPERATIONS

6.1 DPU registers with default PAS parameters

The default parameters are described in the spreadsheet: SWA_UM_V2_PAS_only

6.1.1 Normal mode default

Register 0x3005

6.1.2 BURST mode defaults

Register: 0x3009
Preface for all parameters: pasConfParam.
Content is in Table 8
Name
Length, bits
value, hex
decimal
comment
DynamicBurst.Channeltron
24
0x000001
1
0 - all, 1 - centrals
3 - special, no Idle
DynamicBurst.FirstEnergy
24
0x000000
0
Full 3D
DynamicBurst.EnergyNum
24
0x00005C
92
Full 3D
DynamicBurst.FirstElev
24
0x000000
0
Full 3D
DynamicBurst.ElevNum
24
0x000009
9
Full 3D
DynamicBurst.EnerWinSize
24
0x000030
48
Fast Dynamic
DynamicBurst.ElWinSize
24
0x000003
3
Fast Dynamic
DynamicBurst.K
24
0x000004
4
Fast Dynamic
DynamicBurst.N
24
0x000013
19
Duration Fast Sect
DynamicBurst.L
24
0x00000F
15
Number Full3D + Fast Sect
Table 8: Default contents of Burst Mode Register 0x3009

6.2 DPU - PAS state machine

TO DO a short description
image: 20_home_fedorov_SOLARORB_PAS_THE_BIBLE_COMMON_IMPORTANT_IMAGES_State_Mashine_flow_14_Nov_2018.jpg
Figure 24: DPU-side PAS state machine

6.3 MLT level PAS control

In most of case the it is prohibited for us to send directly TCs to DPU-PAS. To avoid errors, during the flight, we have to operate DPU -> PAS by special Mission Timeline (MTL) “Sequences”. The sequence is a set of TCs with corresponding arguments. Some arguments of TCs can be the arguments of the Sequence. The list of the PAS sequences are shown in Table 9.
MOC ID
Procedure Name
File
Version
Duration
Comment
AIAF016A
PAS ON
4.2
100 s
The first part of PAS activation procedure
AIAF060A
PAS Configure
4.0
formula (a)
The second part of PAS activation procedure
AIAF066B
PAS FDIR activate
1.0
34 s
The third part of PAS activation procedure
AIAF068A
PAS Normal Config
1.0
4 s
Normal mode Configuration
AIAF069A
PAS Burst Config
1.0
4 s
Burst mode Configuration
AIAF131A
PAS SnapShot
1.0
4 s
SnapShot Configuration
AIAF067A
PAS Calibration
3.1
formula (b)
Calibration of CEM HVs
AIAF130A
PAS Apply CEM HV
4.0
25 s
Apply new CEM HV
AIAF065A
PAS_TTF_Safe
4.0
290 s
for planned Thruster Firing (TTF)
AIAF066A
PAS_TFF_Recovery
4.1
formula (c)
for planned TTF
AIAF006A
PAS OFF
3.1
240 s
PAS normal OFF MTL procedure
Table 9: PAS MTL sequences
Important information:
  1. At the top of each sequence spreadsheet there is a list of formal parameters (arguments). The position of these parameters in the sequence bode are shown by yellow. The red color shows the individual TC parameters that cannot be modified.
  2. At the bottom of each sequence (if the sequence duration is > 10 seconds) we put the duration of the procedure (yellow) or a duration calculator. We also show the duration in the formulas below:
    1. Config_procedure[s] = 715 + 25* <CEM_Nominal_Voltage[V]>/50 + 30
    2. Calibration_procedure[s] = 24*<Nsteps of CEM HV> +10 sec; Nsteps_of_CEM_HV = ROUND((STOP_HV - START_HV)/50 + 1.0)
    3. TTF_Recovery[s] = 210 + 25* <CEM_Nominal_Voltage[V]>/50 + 30

6.4 General notes about DPU - PAS communication

  1. It is very important to understand that for some reason DPU can directly process and transmit toward the Solar Orbiter Onboard Computer (OBC) only data of STATIC scheme with N = 1 (i.e. one second data repeating each 3 seconds. Any other type data (STATIC with N > 1, or any type of DYNAMIC scheme) are storied in the rolling memory in DPU. DPU start to transmit the data from the rolling memory toward OBC as soon as the PAS stops generate a fast data flow. For some reason the DPU rolling memory capacity is just 5 minutes.
  2. “Flight” sequencer PAS_SCI_FM_5_0_Full_Image.hex is working with the “COMMISSIONING patch” this patch keeps all CEM HVs always nominal
  3. To activate such a “constant CEM HVs” and correctly activate PAS amplifiers, we use a special procedure described in file “PAS_MLT_Config_procedure_V_4_0_28_May_2020.xlsx”
  4. To understand the HV control conversion factors see PAS_HK_Conversion_all_models_25_Mar_2020.xlsx
; SWA_TC_PAS_WR_MASTER_CTRL_REG ( 1 parameters )
TC, ZIA58863, PIA60343, EQUAL, 0x00000007 # CEMs ON
Wait 5 s
; SWA_TC_PAS_WR_PREAMP_CTRL_REG ( 2 parameters )
TC, ZIA58862, PIA58062, EQUAL, ON # PRE_AMP1 ON
TC, ZIA58862, PIA58063, EQUAL, ON # PRE_AMP2 ON
Wait 5 s
; SWA_TC_PAS_LOAD_STATIC_TABLE ( 7 parameters )
TC, ZIA58876, PIA60700, EQUAL, 0x000000 # All CEMs
TC, ZIA58876, PIA60713, EQUAL, 0x000008 # Se
TC, ZIA58876, PIA60705, EQUAL, 0x000040 # Ne = 64
TC, ZIA58876, PIA60712, EQUAL, 0x000000 # Sel
TC, ZIA58876, PIA60704, EQUAL, 0x000009 # Nel = 9
TC, ZIA58876, PIA60720, EQUAL, 0x000001 # K = 1
TC, ZIA58876, PIA60721, EQUAL, 0x000001 # N = 1
Wait 5 s
; SWA_TC_PAS_WR_MAILBOX_CTRL ( 1 parameters )
TC, ZIA58873, PIA60347, EQUAL, 0x00000001 # Start Static Scheme
Wait 30 s
; SWA_TC_PAS_WR_MAILBOX_CTRL ( 1 parameters )
TC, ZIA58873, PIA60347, EQUAL, 0x000000FF # Abort Sequencer activity
Wait 5 s
Table 10: Activation the amplifiers and CEMs HV before to ramp up CEMs HVs

6.5 MODES and performance control

There are two modes of PAS: “Normal Mode (NM) and Burst Mode (BM). The performance of these modes is fully controlled by DPU. DPU sends special TC to PAS according to the internal hardly programmed schedule synchronized to the SCET (Spacecraft Elapsed Time). Note that SCET is NOT equal to UTC and slowly moves relatively UTC. Thus the shift between UTC and SCET is different for each new week.

6.5.1 NORMAL MODE

The Normal Mode diagram is shown in Figure 25. It consists normally of different STATIC scheme samplings (see Section 4 and Figure 19), but every 300 s DPU starts a short DYNAMIC scheme (Section 4 and Figure 20). It is important to understand that DPU controls the NM performance as follows:
  1. Before 100 s (SCET) boundary DPU configures Full Sampling (FS) and starts STATIC scheme with K=1, N=1. PAS performs one FS 0.5 s later 100 s boundary.
  2. Then DPU recalculates the Se and Sel for Normal Sampling (S) , configure it, and starts STATIC scheme execution with N = 1
  3. Before 300 s (SCET) boundary DPU stops Normal Sampling, configure the DYNAMIC scheme with N=7 and L=1, and starts a DYNAMIC scheme to center it around the 300s boundary
image: 21_home_fedorov_SOLARORB_PAS_THE_BIBLE_COMMON_I___S_Nrmal_mode_Snap_300s_V_2_3_21_Nov_2016_HR.jpg
Figure 25: Normal Mode diagram

6.5.2 BURST MODE

A BM example diagram is shown in Figure 26. Such BM configuration has been used during 2021 - 2022. The BM is a realization of the Dynamic Scheme with fixed parametres (see Table 11). These parameters can be modified via a special dedicated procedure only. Other Dynamics Scheme parameters can be easily modified run-time (see Table xxx in Section 6.6). Note that for the memory protection reason DPU stops BM execution at 296 second after the start, and loose the last Full Sampling (FS) of this NM.
Parameter
Value
Comment
N
19
length in seconds of fast samplings
L
16
number of fast intervals
separated by full sampling
Table 11: Fixed BM parameters
image: 22_home_fedorov_SOLARORB_PAS_THE_BIBLE_COMMON_IMPORTANT_IMAGES_PAS_BM_layout_20220217.jpg
Figure 26: Burst Mode (BM)

6.6 PAS Configuration

At the beginning of each Short Time Planning (STP, one week usually) we make, reconfiguration of the PAS configuration table storied in the DPU memory. The same we have to do after each PAS OFF. The procedure is looking as shown in Table 12.
00:04
AIAF068A
Configure_PAS_NM
0x00, 0x14, 0x40, 0x00, 0x09, 0x01
00:04
AIAF131A
Configure_PAS_snapshot
0x00, 0x04, 0x5A, 0x00, 0x09, 0x24, 0x05, 0x04
00:04
AIAF069A
Configure_PAS_BM
0x00, 0x04, 0x5A, 0x00, 0x09, 0x24, 0x05, 0x04
Table 12: An example of the PAS configuration in a STP planning
The explication of the parameters are given in the PAS_Modes_Flight spreadsheet. This spreadsheet shall be used to keep the current configuration and to check new STP plans.

6.7 Special notes about STATIC mode

If PAS has to be in the STATIC mode, every time after PAS recovery or ON, we have to start NM, stop NM and Start STATIC. We need this to correctly configure PAS internal tables and set the energy and elevation windows to the correct position relatively solar wind peak. The procedure looks like in Table 13.
00:02
AIAF061A
Start_PAS_science
01:50
AIAF063A
Stop_PAS_science
00:20
AIAF061B
Start_PAS_static_mode_science
Table 13: Start STATIC mode after PAS recovery or ON. The time intervals may vary.
Every 0:00, 6:00, 18:00 we do the STATIC mode energy and elevation windows adjusting using the procedure shown in Table 14.
AIAF133A
Abort_the_PAS_sequencer
00T00:00:01
AIAF063A
Stop_PAS_science
00T00:00:09
AIAF061A
Start_PAS_science
00T00:01:40
AIAF063A
Stop_PAS_science
00T00:00:20
AIAF061B
Start_PAS_static_mode_science
Table 14: Adjust STATIC mode. The time intervals may vary
In both cases the rools are as follows:
  1. We have to start NM (AIAF061A) AFTER the 300 s SCET boundary, in the time interval [ 20 : 90] or [120 : 190] seconds offset after the 300 s SCET boundary
  2. We have to stop NM 100s (AIAF063A) (+/- 5 s) after the start.
  3. We can restart STATIC in 20 s after the NM stop
The STATIC windows adjustment after the CALIBRATION procedure is a little bit different. It is shown in Table 15. The time management is explained in Figure 27.
AIAF067A
Start_PAS_Calibration
0x047A, 0x075B, 0x05C2
00T00:09:10
AIAF063A
Stop_PAS_science
 
00T00:00:10
AIAF061B
Start_PAS_static_mode_science
Table 15: Adjust STATIC mode after CALIBRATION. The time intervals may vary.
image: 26_home_fedorov_SOLARORB_PAS_THE_BIBLE_COMMON_IMPORTANT_IMAGES_PAS_Calibration_timing_20220727.png
Figure 27: PAS calibration timing and 100 seconds boundaries