Index Page
gfpa_c
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X 

Procedure
Abstract
Required_Reading
Keywords
Brief_I/O
Detailed_Input
Detailed_Output
Parameters
Exceptions
Files
Particulars
Examples
Restrictions
Literature_References
Author_and_Institution
Version
Index_Entries

Procedure

   void gfpa_c ( ConstSpiceChar     * target,
                 ConstSpiceChar     * illmn,
                 ConstSpiceChar     * abcorr,
                 ConstSpiceChar     * obsrvr,
                 ConstSpiceChar     * relate,
                 SpiceDouble          refval,
                 SpiceDouble          adjust,
                 SpiceDouble          step,
                 SpiceInt             nintvls,
                 SpiceCell          * cnfine,
                 SpiceCell          * result     )

Abstract

   Determine time intervals for which a specified constraint
   on the phase angle between an illumination source, a target,
   and observer body centers is met.

Required_Reading

   GF
   NAIF_IDS
   SPK
   TIME
   WINDOWS

Keywords

   EVENT
   GEOMETRY
   EPHEMERIS
   SEARCH
   WINDOW


Brief_I/O

   Variable         I/O  Description
   ---------------  ---  ------------------------------------------------
   SPICE_GF_CNVTOL   P   Convergence tolerance
   target            I   Name of the target body.
   illmn             I   Name of the illuminating body.
   abcorr            I   Aberration correction flag.
   obsrvr            I   Name of the observing body.
   relate            I   Relational operator.
   refval            I   Reference value.
   adjust            I   Adjustment value for absolute extrema searches.
   step              I   Step size used for locating extrema and roots.
   nintvls           I   Workspace window interval count.
   cnfine           I-O  SPICE window to which the search is confined.
   result            O   SPICE window containing results.

Detailed_Input

   target      is the name of a target body. Optionally, you may supply
               a string containing the integer ID code for the object.
               For example both "MOON" and "301" are legitimate strings
               that indicate the Moon is the target body.

               Case and leading or trailing blanks are not significant
               in the string `target'.

   illmn       the string name of the illuminating body. This will
               normally be "SUN" but the algorithm can use any
               ephemeris object

               Case and leading or trailing blanks are not significant
               in the string `illmn'.

   abcorr      indicates the aberration corrections to be applied to
               the observer-target position vector to account for
               one-way light time and stellar aberration.

               Any aberration correction accepted by the SPICE
               routine spkezr_c is accepted here. See the header
               of spkezr_c for a detailed description of the
               aberration correction options. For convenience,
               the allowed aberation options are listed below:

                  "NONE"     Apply no correction.

                  "LT"       "Reception" case:  correct for
                             one-way light time using a Newtonian
                             formulation.

                  "LT+S"     "Reception" case:  correct for
                             one-way light time and stellar
                             aberration using a Newtonian
                             formulation.

                  "CN"       "Reception" case:  converged
                             Newtonian light time correction.

                  "CN+S"     "Reception" case:  converged
                             Newtonian light time and stellar
                             aberration corrections.

               Note that this routine accepts only reception mode
               aberration corrections.

               Case and leading or trailing blanks are not significant
               in the string `abcorr'.

   obsrvr      is the name of the observing body. Optionally, you may
               supply a string containing the integer ID code for the
               object. For example both "MOON" and "301" are legitimate
               strings that indicate the Moon is the observer.

               Case and leading or trailing blanks are not significant
               in the string `obsrvr'.

   relate      is a relational operator used to define a constraint on
               the phase angle. The result window found by
               this routine indicates the time intervals where the
               constraint is satisfied. Supported values of `relate'
               and corresponding meanings are shown below:

                  ">"       The phase angle value is greater than the
                            reference value REFVAL.

                  "="       The phase angle value is equal to the
                            reference value REFVAL.

                  "<"       The phase angle value is less than the
                            reference value REFVAL.

                  "ABSMAX"  The phase angle value is at an absolute
                            maximum.

                  "ABSMIN"  The phase angle value is at an absolute
                            minimum.

                  "LOCMAX"  The phase angle value is at a local
                            maximum.

                  "LOCMIN"  The phase angle value is at a local
                            minimum.

               `relate' may be used to specify an "adjusted" absolute
               extremum constraint: this requires the phase angle
               to be within a specified offset relative to an
               absolute extremum. The argument `adjust' (described
               below) is used to specify this offset.

               Local extrema are considered to exist only in the
               interiors of the intervals comprising the confinement
               window:  a local extremum cannot exist at a boundary
               point of the confinement window.

               Case and leading or trailing blanks are not significant
               in the string `relate'.

   `refval'    is the reference value used together with the argument
               `relate' to define an equality or inequality to be
               satisfied by the phase angle. See the discussion of
               `relate' above for further information.

               The units of `refval' are radians.

   adjust      is a parameter used to modify searches for absolute
               extrema: when `relate' is set to "ABSMAX" or "ABSMIN"
               and `adjust' is set to a positive value, gfpa_c will
               find times when the phase angle is within
               `adjust' radians of the specified extreme value.

               If `adjust' is non-zero and a search for an absolute
               minimum `min' is performed, the result window contains
               time intervals when the phase angle has values between
                `min' and min+adjust.

               If the search is for an absolute maximum `max', the
               corresponding range is from max-adjust to `max'.

               `adjust' is not used for searches for local extrema,
               equality or inequality conditions.

   step        is the step size to be used in the search. `step' must
               be shorter than any maximal time interval on which the
               specified phase angle function is monotone increasing or
               decreasing. That is, if the confinement window is
               partitioned into alternating intervals on which the
               phase angle function is either monotone increasing or
               decreasing, `step' must be shorter than any of these
               intervals.

               However, `step' must not be *too* short, or the search
               will take an unreasonable amount of time.

               The choice of `step' affects the completeness but not
               the precision of solutions found by this routine; the
               precision is controlled by the convergence tolerance.
               See the discussion of the parameter SPICE_GF_CNVTOL for
               details.

               STEP has units of TDB seconds.

   nintvls     is a parameter specifying the number of intervals that
               can be accommodated by each of the dynamically allocated
               workspace windows used internally by this routine.

               In many cases, it's not necessary to compute an accurate
               estimate of how many intervals are needed; rather, the
               user can pick a size considerably larger than what's
               really required.

               However, since excessively large arrays can prevent
               applications from compiling, linking, or running
               properly, sometimes `nintvls' must be set according to
               the actual workspace requirement. A rule of thumb for
               the number of intervals needed is

                  nintvls  =  2*n  +  ( m / step )

               where

                  n     is the number of intervals in the confinement
                        window

                  m     is the measure of the confinement window, in
                        units of seconds

                  `step'  is the search step size in seconds

   cnfine      is a SPICE window that confines the time period over
               which the specified search is conducted. `cnfine' may
               consist of a single interval or a collection of
               intervals.

               The endpoints of the time intervals comprising `cnfine'
               are interpreted as seconds past J2000 TDB.

               See the Examples section below for a code example that
               shows how to create a confinement window.

Detailed_Output

   cnfine      is the input confinement window, updated if necessary so
               the control area of its data array indicates the
               window's size and cardinality. The window data are
               unchanged.

   result      is the window of intervals, contained within the
               confinement window `cnfine', on which the specified
               phase angle constraint is satisfied.

               The endpoints of the time intervals comprising `result'
               are interpreted as seconds past J2000 TDB.

               If `result' is non-empty on input, its contents will be
               discarded before gfpa_c conducts its search.

Parameters

   SPICE_GF_CNVTOL

               is the convergence tolerance used for finding endpoints
               of the intervals comprising the result window.
               SPICE_GF_CNVTOL is used to determine when binary
               searches for roots should terminate: when a root is
               bracketed within an interval of length SPICE_GF_CNVTOL,
               the root is considered to have been found.

               The accuracy, as opposed to precision, of roots found by
               this routine depends on the accuracy of the input data.
               In most cases, the accuracy of solutions will be
               inferior to their precision.

               SPICE_GF_CNVTOL is declared in the header file
               SpiceGF.h.

Exceptions

   1)  In order for this routine to produce correct results,
       the step size must be appropriate for the problem at hand.
       Step sizes that are too large may cause this routine to miss
       roots; step sizes that are too small may cause this routine
       to run unacceptably slowly and in some cases, find spurious
       roots.

       This routine does not diagnose invalid step sizes, except
       that if the step size is non-positive, an error is signaled
       by a routine in the call tree of this routine.

   2)  Due to numerical errors, in particular,

          - Truncation error in time values
          - Finite tolerance value
          - Errors in computed geometric quantities

       it is *normal* for the condition of interest to not always be
       satisfied near the endpoints of the intervals comprising the
       result window.

       The result window may need to be contracted slightly by the
       caller to achieve desired results. The SPICE window routine
       wncond_c can be used to contract the result window.

   3)  If an error (typically cell overflow) occurs while performing
       window arithmetic, the error will be diagnosed by a routine
       in the call tree of this routine.

   4)  If the relational operator `relate' is not recognized, an
       error is signaled by a routine in the call tree of this
       routine.

   5)  If the aberration correction specifier contains an
       unrecognized value, an error is signaled by a routine in the
       call tree of this routine.

   6)  If `adjust' is negative, an error is signaled by a routine in
       the call tree of this routine.

   7)  If either of the input body names do not map to NAIF ID
       codes, an error is signaled by a routine in the call tree of
       this routine.

   8)  If required ephemerides or other kernel data are not
       available, an error is signaled by a routine in the call tree
       of this routine.

   9)  If the workspace interval count is less than 1, the error
       SPICE(VALUEOUTOFRANGE) will be signaled.

   10) If the required amount of workspace memory cannot be
       allocated, the error SPICE(MALLOCFAILURE) will be
       signaled.

   11) If the output SPICE window `result' has insufficient capacity to
       contain the number of intervals on which the specified geometric
       condition is met, the error will be diagnosed by a routine in
       the call tree of this routine. If the result window has size
       less than 2, the error SPICE(INVALIDDIMENSION) will be signaled
       by this routine.

   12) If any input string argument pointer is null, the error
       SPICE(NULLPOINTER) will be signaled.

   13) If any input string argument is empty, the error
       SPICE(EMPTYSTRING) will be signaled.

   14) If either input cell has type other than SpiceDouble,
       the error SPICE(TYPEMISMATCH) is signaled.

   15) An error signals from a routine in the call tree of
       this routine for any transmit mode aberration correction.

Files

   Appropriate SPK and PCK kernels must be loaded by the calling
   program before this routine is called.

   The following data are required:

      - SPK data: the calling application must load ephemeris data
        for the targets, observer, and any intermediate objects in
        a chain connecting the targets and observer that cover the
        time period specified by the window CNFINE. If aberration
        corrections are used, the states of target and observer
        relative to the solar system barycenter must be calculable
        from the available ephemeris data. Typically ephemeris data
        are made available by loading one or more SPK files using
        furnsh_c.

   Kernel data are normally loaded once per program run, NOT every
   time this routine is called.

Particulars

                     ILLMN      OBS
     ILLMN as seen      *       /
     from TARG at       |      /
     ET - LT.           |     /
                       >|..../< phase angle
                        |   /
                      . |  /
                    .   | /
                   .     *     TARG as seen from OBS
             SEP   .   TARG    at ET
                    .  /
                      /
                     *

   This routine determines if the caller-specified constraint
   condition on the geometric event (phase angle) is satisfied for
   any time intervals within the confinement window `cnfine'. If one
   or more such time intervals exist, those intervals are added
   to the `result' window.

   This routine provides a simpler, but less flexible interface
   than does the routine gfevnt_c for conducting searches for
   illuminator-target-observer phase angle value events.
   Applications that require support for progress reporting,
   interrupt handling, non-default step or refinement functions
   should call gfevnt_c rather than this routine.

   Below we discuss in greater detail aspects of this routine's
   solution process that are relevant to correct and efficient
   use of this routine in user applications.


   The Search Process
   ==================

   Regardless of the type of constraint selected by the caller, this
   routine starts the search for solutions by determining the time
   periods, within the confinement window, over which the
   phase angle function is monotone increasing and monotone
   decreasing. Each of these time periods is represented by a SPICE
   window. Having found these windows, all of the phase angle
   function's local extrema within the confinement window are known.
   Absolute extrema then can be found very easily.

   Within any interval of these "monotone" windows, there will be at
   most one solution of any equality constraint. Since the boundary
   of the solution set for any inequality constraint is contained in
   the union of

      - the set of points where an equality constraint is met
      - the boundary points of the confinement window

   the solutions of both equality and inequality constraints can be
   found easily once the monotone windows have been found.


   Step Size
   =========

   The monotone windows (described above) are found using a two-step
   search process. Each interval of the confinement window is
   searched as follows: first, the input step size is used to
   determine the time separation at which the sign of the rate of
   change of phase angle will be sampled. Starting at
   the left endpoint of an interval, samples will be taken at each
   step. If a change of sign is found, a root has been bracketed; at
   that point, the time at which the time derivative of the
   phase angle is zero can be found by a refinement process, for
   example, using a binary search.

   Note that the optimal choice of step size depends on the lengths
   of the intervals over which the phase angle function is monotone:
   the step size should be shorter than the shortest of these
   intervals (within the confinement window).

   The optimal step size is *not* necessarily related to the lengths
   of the intervals comprising the result window. For example, if
   the shortest monotone interval has length 10 days, and if the
   shortest result window interval has length 5 minutes, a step size
   of 9.9 days is still adequate to find all of the intervals in the
   result window. In situations like this, the technique of using
   monotone windows yields a dramatic efficiency improvement over a
   state-based search that simply tests at each step whether the
   specified constraint is satisfied. The latter type of search can
   miss solution intervals if the step size is longer than the
   shortest solution interval.

   Having some knowledge of the relative geometry of the target,
   illumination source, and observer can be a valuable aid in
   picking a reasonable step size. In general, the user can
   compensate for lack of such knowledge by picking a very short
   step size; the cost is increased computation time.

   Note that the step size is not related to the precision with which
   the endpoints of the intervals of the result window are computed.
   That precision level is controlled by the convergence tolerance.


   Convergence Tolerance
   =====================

   As described above, the root-finding process used by this routine
   involves first bracketing roots and then using a search process to
   locate them.  "Roots" include times when extrema are attained and
   times when the geometric quantity function is equal to a reference
   value or adjusted extremum. All endpoints of the intervals comprising
   the result window are either endpoints of intervals of the confinement
   window or roots.

   Once a root has been bracketed, a refinement process is used to
   narrow down the time interval within which the root must lie.
   This refinement process terminates when the location of the root
   has been determined to within an error margin called the
   "convergence tolerance." The convergence tolerance used by this
   routine is set via the parameter SPICE_GF_CNVTOL.

   The value of SPICE_GF_CNVTOL is set to a "tight" value so that the
   tolerance doesn't limit the accuracy of solutions found by this
   routine. In general the accuracy of input data will be the limiting
   factor.

   The user may change the convergence tolerance from the default
   SPICE_GF_CNVTOL value by calling the routine gfstol_c, e.g.

      gfstol_c( tolerance value in seconds )

   Call gfstol_c prior to calling this routine. All subsequent
   searches will use the updated tolerance value.

   Searches over time windows of long duration may require use of
   larger tolerance values than the default: the tolerance must be
   large enough so that it, when added to or subtracted from the
   confinement window's lower and upper bounds, yields distinct time
   values.

   Setting the tolerance tighter than SPICE_GF_CNVTOL is unlikely to be
   useful, since the results are unlikely to be more accurate.
   Making the tolerance looser will speed up searches somewhat,
   since a few convergence steps will be omitted. However, in most
   cases, the step size is likely to have a much greater effect
   on processing time than would the convergence tolerance.


   The Confinement Window
   ======================

   The simplest use of the confinement window is to specify a time
   interval within which a solution is sought. However, the
   confinement window can, in some cases, be used to make searches
   more efficient. Sometimes it's possible to do an efficient search
   to reduce the size of the time period over which a relatively
   slow search of interest must be performed. See the "CASCADE"
   example program in gf.req for a demonstration.

Examples

   The numerical results shown for these examples may differ across
   platforms. The results depend on the SPICE kernels used as
   input, the compiler and supporting libraries, and the machine
   specific arithmetic implementation.

      Use the meta-kernel shown below to load the required SPICE
      kernels.

         KPL/MK

         File name: standard.tm

         This meta-kernel is intended to support operation of SPICE
         example programs. The kernels shown here should not be
         assumed to contain adequate or correct versions of data
         required by SPICE-based user applications.

         In order for an application to use this meta-kernel, the
         kernels referenced here must be present in the user's
         current working directory.

         The names and contents of the kernels referenced
         by this meta-kernel are as follows:

            File name                     Contents
            ---------                     --------
            de421.bsp                     Planetary ephemeris
            pck00009.tpc                  Planet orientation and
                                          radii
            naif0009.tls                  Leapseconds

         \begindata

            KERNELS_TO_LOAD = ( 'de421.bsp',
                                'pck00009.tpc',
                                'naif0009.tls'  )

         \begintext

   Example:

      Determine the time windows from December 1, 2006 UTC to
      January 31, 2007 UTC for which the sun-moon-earth configuration
      phase angle satisfies the relation conditions with respect to a
      reference value of .57598845 radians (the phase angle at
      January 1, 2007 00:00:00.000 UTC, 33.001707 degrees). Also
      determine the time windows corresponding to the local maximum and
      minimum phase angles, and the absolute maximum and minimum phase
      angles during the search interval. The configuration defines the
      sun as the illuminator, the moon as the target, and the earth as
      the observer.

      #include <stdio.h>
      #include "SpiceUsr.h"

      #define  TIMFMT  "YYYY MON DD HR:MN:SC.###"
      #define  NINTVL  5000
      #define  TIMLEN  41
      #define  NLOOPS  7

      int main()
         {

         /.
         Local variables
         ./
         SpiceChar               begstr [ TIMLEN ];
         SpiceChar               endstr [ TIMLEN ];

         SPICEDOUBLE_CELL      ( cnfine, 2 );
         SPICEDOUBLE_CELL      ( result, NINTVL*2 );

         SpiceDouble             adjust;
         SpiceDouble             et0;
         SpiceDouble             et1;
         SpiceDouble             phaseq;
         SpiceDouble             refval;
         SpiceDouble             start;
         SpiceDouble             step;
         SpiceDouble             stop;
         SpiceInt                i;
         SpiceInt                j;

         /.
         Define the values for target, observer, illuminator, and
         aberration correction.
         ./

         ConstSpiceChar * target = "moon";
         ConstSpiceChar * illmn  = "sun";
         ConstSpiceChar * abcorr = "lt+s";
         ConstSpiceChar * obsrvr = "earth";

         ConstSpiceChar * relate [NLOOPS] = { "=",
                                              "<",
                                              ">",
                                              "LOCMIN",
                                              "ABSMIN",
                                              "LOCMAX",
                                              "ABSMAX",
                                            };

         /.
         Load kernels.
         ./
         furnsh_c ( "standard.tm" );

         /.
         Store the time bounds of our search interval in
         the confinement window.
         ./
         str2et_c ( "2006 DEC 01", &et0 );
         str2et_c ( "2007 JAN 31", &et1 );

         wninsd_c ( et0, et1, &cnfine );

         /.
         Search using a step size of 1 day (in units of seconds).
         The reference value is 0.57598845 radians. We're not using the
         adjustment feature, so we set ADJUST to zero.
         ./
         step   = spd_c();
         refval = 0.57598845;
         adjust = 0.0;

         for ( j = 0;  j < NLOOPS;  j++ )
            {

            printf ( "Relation condition: %s\n",  relate[j] );

            /.
            Perform the search. The SPICE window `result' contains
            the set of times when the condition is met.
            ./
            gfpa_c ( target,    illmn,   abcorr, obsrvr,
                     relate[j], refval,  adjust, step,
                     NINTVL,    &cnfine, &result        );

            /.
            Display the results.
            ./
            if ( wncard_c(&result) == 0 )
               {
               printf ( "Result window is empty.\n\n" );
               }
            else
               {

               for ( i = 0;  i < wncard_c(&result);  i++ )
                  {

                  /.
                  Fetch the endpoints of the Ith interval
                  of the result window.
                  ./
                  wnfetd_c ( &result, i, &start, &stop );

                  phaseq = phaseq_c ( start, target, illmn, obsrvr, abcorr );

                  timout_c ( start, TIMFMT, TIMLEN, begstr );
                  printf ( "Start time = %s %16.9f\n", begstr, phaseq );

                  phaseq = phaseq_c ( stop, target, illmn, obsrvr, abcorr );

                  timout_c ( stop, TIMFMT, TIMLEN, endstr );
                  printf ( "Stop time  = %s %16.9f\n", endstr, phaseq );
                  }

               printf("\n");

               }

            }

         return ( 0 );
         }

   The program outputs:

      Relation condition: =
      Start time = 2006 DEC 02 13:31:34.414      0.575988450
      Stop time  = 2006 DEC 02 13:31:34.414      0.575988450
      Start time = 2006 DEC 07 14:07:55.470      0.575988450
      Stop time  = 2006 DEC 07 14:07:55.470      0.575988450
      Start time = 2006 DEC 31 23:59:59.997      0.575988450
      Stop time  = 2006 DEC 31 23:59:59.997      0.575988450
      Start time = 2007 JAN 06 08:16:25.512      0.575988450
      Stop time  = 2007 JAN 06 08:16:25.512      0.575988450
      Start time = 2007 JAN 30 11:41:32.557      0.575988450
      Stop time  = 2007 JAN 30 11:41:32.557      0.575988450

      Relation condition: <
      Start time = 2006 DEC 02 13:31:34.414      0.575988450
      Stop time  = 2006 DEC 07 14:07:55.470      0.575988450
      Start time = 2006 DEC 31 23:59:59.997      0.575988450
      Stop time  = 2007 JAN 06 08:16:25.512      0.575988450
      Start time = 2007 JAN 30 11:41:32.557      0.575988450
      Stop time  = 2007 JAN 31 00:00:00.000      0.468279091

      Relation condition: >
      Start time = 2006 DEC 01 00:00:00.000      0.940714974
      Stop time  = 2006 DEC 02 13:31:34.414      0.575988450
      Start time = 2006 DEC 07 14:07:55.470      0.575988450
      Stop time  = 2006 DEC 31 23:59:59.997      0.575988450
      Start time = 2007 JAN 06 08:16:25.512      0.575988450
      Stop time  = 2007 JAN 30 11:41:32.557      0.575988450

      Relation condition: LOCMIN
      Start time = 2006 DEC 05 00:16:50.317      0.086121423
      Stop time  = 2006 DEC 05 00:16:50.317      0.086121423
      Start time = 2007 JAN 03 14:18:31.977      0.079899769
      Stop time  = 2007 JAN 03 14:18:31.977      0.079899769

      Relation condition: ABSMIN
      Start time = 2007 JAN 03 14:18:31.977      0.079899769
      Stop time  = 2007 JAN 03 14:18:31.977      0.079899769

      Relation condition: LOCMAX
      Start time = 2006 DEC 20 14:09:10.392      3.055062862
      Stop time  = 2006 DEC 20 14:09:10.392      3.055062862
      Start time = 2007 JAN 19 04:27:54.600      3.074603891
      Stop time  = 2007 JAN 19 04:27:54.600      3.074603891

      Relation condition: ABSMAX
      Start time = 2007 JAN 19 04:27:54.600      3.074603891
      Stop time  = 2007 JAN 19 04:27:54.600      3.074603891

Restrictions

   1) The kernel files to be used by this routine must be loaded
      (normally using the CSPICE routine furnsh_c) before this
      routine is called.

Literature_References

   None.

Author_and_Institution

   N.J. Bachman   (JPL)
   E.D. Wright    (JPL)

Version

   -CSPICE Version 1.0.0, 15-JUL-2014 (EDW) (NJB)

Index_Entries

 GF phase angle search

Link to routine gfpa_c source file gfpa_c.c

Wed Apr  5 17:54:36 2017